
E-Companion for “Impacts of the COVID-19 Pandemic on
Grocery Retail Operations: An Analytical Model”

EC.1 Summary of Notations

Table EC.1

α0 Base shopping rate

ψ Retailer’s health safety effort level

α(ψ) Adjusted-shopping rate when health safety effort level is ψ; α= α(ψ)−h
βw Sensitivity to store waiting time

β′w Sensitivity to service waiting time (delivery and curbside pickup)

βp Sensitivity to delivery service premium

C(ψ) Safety-related cost for each shopping trip when health safety effort level is ψ

γ Fraction of gross profit collected by the retailer from delivery service

h Hassle of visiting the store

λis Shopping rate of in-store customers, i∈ {I,D,C}
λi Online customers’ shopping rate, i∈ {d, c}
n Store occupancy limit

pc Curbside pickup service premium

pd Delivery service premium

R(λ) Gross profit per shopping session associated with the shopping rate λ

τ Average in-store duration under the in-store and delivery modes

τc Average in-store duration under the curbside pickup mode

θs Fraction of in-store customers turning away in the absence of online service (θs = 1− θs)
θi Fraction of online customers, i∈ {d, c} (θi = 1− θi)
wis Average in-store customers’ waiting time, i∈ {I,D,C}
wi Average service waiting time for delivery and curbside pickup, i∈ {d, c}
µc Curbside pickup service capacity

g Marginal cost of hiring additional capacity for the curbside pickup service

Ri Minimum shopping amount for delivery and curbside pickup, i∈ {c, d}

EC.2 Proofs

Proof of Lemma 1. Using the functional form R(λ) = R0e
ν(α0−λ) and differentiating the func-

tion λ (R(λ)−C) with respect to λ, we get the following:

d

dλ
[λ (R(λ)−C)] =R(λ)(1−λν)−C,

d2

dλ2
[λ (R(λ)−C)] =−R(λ)(2−λν).
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It follows from the second derivative that λ (R(λ)−C) is concave in λ for λ< 2/ν. The first-order

condition for the optimal λ satisfies:

λ∗ =
1

ν
− C

νR(λ)
<

2

ν
.

Thus, the function λ (R(λ)−C) increases in λ for λ < λ∗ and decreases in λ for λ ∈ (λ∗,2/ν].

For λ> 2/ν, we have:

d

dλ
[λ (R(λ)−C)] =R(λ)(1−λν)−C <−R(λ)−C < 0.

Thus, the function λ (R(λ)−C) decreases in λ for all λ > λ∗. This proves that the func-

tion λ (R(λ)−C) is unimodal. �

Proof of Lemma 2. The analytical expression for λIs (Eq. (11)) directly follows from solving

Eqs. (1) and (4) for λIs. The analytical expression for λDs (Eq. (12)) directly follows from solving

Eqs. (1) and (5) for λDs . The analytical expression for λCs (Eq. (13)) directly follows from solving

Eqs. (1) and (6) for λCs .

The decreasing nature of λIs, λ
D
s , and λCs can be established by showing that the first derivative

of these with respect to n are negative. �

Proof of Proposition 1. We prove the proposition separately for each operating mode below.

In-store shopping mode. By differentiating ΠI (Eq. (7)) with respect to n, we obtain:

dΠI

dn
=

d

dλ
[(R(λ)−C)λ]

∣∣∣∣
λ=λIs

× dλ
I
s

dn
. (EC.1)

We first establish that dλIs/dn ≥ 0. The equilibrium shopping rate λIs > 0 in the in-store mode

satisfies the following (from Eqs. (1) and (4)):

λIs = α− βw
n/τ −λIs

.

By differentiating λIs with respect to n, we obtain:

dλIs
dn

= βw

(
1

n/τ −λIs

)2(
1

τ
− dλ

I
s

dn

)
= βw

(
wIs
)2(1

τ
− dλ

I
s

dn

)
, (from Eq. (4))

and after rearranging the terms, we obtain:

dλIs
dn

=
βw (wIs)

2

τ
(

1 +βw (wIs)
2
) > 0.

Therefore, the sign of dΠI/dn (given in Eq. (EC.1)) depends on the sign of

d

dλ
[(R(λ)−C)λ]

∣∣∣∣
λ=λIs

. (EC.2)
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Since λIs < α, we have λIs < λ∗ when α ≤ λ∗. Therefore, given that (R(λ)− C)λ is unimodal (as

we proved in Lemma (1)), the sign of Eq. (EC.2) is positive and dΠI/dn> 0 (ΠI decreases with a

stricter n) when α≤ λ∗

However, when α > λ∗, the profit may increase or decrease as n decreases. In this case, the

sign of Eq. (EC.2) depends on the order of λ∗ and λIs: If λIs < λ∗, the sign of (EC.2) is positive,

and dΠI/dn > 0; and if λ∗ < λIs, the sign of Eq. (EC.2) is negative, and dΠI/dn < 0. Since λIs is

increasing in n (as we proved in Lemma 2), for λ∗ < λIs to hold, n needs to be above the store

occupancy limit that satisfies λIs = λ∗.

Delivery mode. By differentiating ΠD (Eq. (8)) with respect to n, we obtain:

dΠD

dn
=

d

dλ
[(R(λ)−C)λ]

∣∣∣∣
λ=λDs

× dλ
D
s

dn
× θd. (EC.3)

We first establish that dλDs /dn ≥ 0. The equilibrium shopping rate λDs > 0 in the delivery mode

satisfies the following (from Eqs. (1) and (5)):

λDs = α− β′w
n/τ −

(
θdλDs + θdλd

) .
By differentiating λDs with respect to n, we obtain:

dλDs
dn

= β′w

(
1

n/τ −
(
θdλDs + θdλd

))2(
1

τ
− θd

dλDs
dn

)
= β′w

(
wDs
)2(1

τ
− θd

dλDs
dn

)
, (from Eq. (5))

and after rearranging the terms, we obtain:

dλDs
dn

=
β′w (wDs )

2

τ
(

1 + θdβ′w (wDs )
2
) > 0.

Therefore, given that 0< θd < 1, the sign of dΠD/dn (given in Eq. (EC.3)) depends on the sign of

d

dλ
[(R(λ)−C)λ]

∣∣∣∣
λ=λDs

. (EC.4)

Since λDs < α, we have λDs < λ∗ when α≤ λ∗. Therefore, given that (R(λ)−C)λ is unimodal (as

we proved in Lemma 1), the sign of Eq. (EC.4) is positive and dΠD/dn > 0 (ΠD decreases with a

stricter n) when α< λ∗

However, when α > λ∗, the profit may increase or decrease as n decreases. In this case, the

sign of Eq. (EC.4) depends on the order of λ∗ and λDs : If λDs < λ∗, the sign of (EC.4) is positive,

and dΠD/dn > 0; and if λ∗ < λDs , the sign of Eq. (EC.4) is negative, and dΠD/dn < 0. Since λDs

is increasing in n (as we proved in Lemma 2), for λ∗ < λDs to hold, n needs to be above the store

occupancy limit that satisfies λDs = λ∗.
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Curbside pickup mode. By differentiating ΠC (Eq. (10)) with respect to n, we obtain:

dΠC

dn
=

d

dλ
[(R(λ)−C)λ]

∣∣∣∣
λ=λCs

× dλ
C
s

dn
× θ̄c. (EC.5)

We first establish that dλCs /dn≥ 0. The equilibrium shopping rate λCs > 0 in the curbside pickup

mode satisfies the following (from Eqs. (1) and (6)):

λCs = α− β′w
n/τc−λCs

.

By differentiating λCs with respect to n and rearranging the terms, we obtain:

dλCs
dn

=
β′w (wB)

2

τc

(
1 +β′w (wB)

2
) > 0.

Therefore, given that 0< θc < 1, the sign of dΠC/dn (given in Eq. (EC.5)) depends on the sign of

d

dλ
[(R(λ)−C)λ]

∣∣∣∣
λ=λCs

. (EC.6)

Since λCs <α, we have λCs <λ
∗ when α≤ λ∗. Therefore, given that (R(λ)−C)λ is unimodal (as we

proved in Lemma 1), the sign of (EC.6) is positive, and dΠC/dn> 0.

However, when α > λ∗, the profit may increase or decrease as n decreases. In this case, the

sign of (EC.6) depends on the order of λ∗ and λCs : If λCs < λ∗, the sign of (EC.6) is positive,

and dΠC/dn > 0; and if λ∗ < λCs , the sign of (EC.6) is negative, and dΠC/dn < 0. Since λCs is

increasing in n (as we proved in Lemma 2), for λ∗ < λCs to hold, n needs to be above the store

occupancy limit that satisfies λCs = λ∗. �

Proof of Corollary 1. From Proposition 1, we know that when α > λ∗, the profit under each

operating mode may increase as n becomes stricter. To prove the corollary, we prove that λ∗ is

decreasing in ν and ψ, which indicates that the profit may increase with stricter n for a wider

range of the adjusted base shopping rates α.

We can derive the threshold value λ∗, which maximizes the function1 (R(λ) − C(ψ))λ, as in

Eq. (EC.7) when R(λ) =R0e
ν(α0−λ):

λ∗ =
1−A
ν

, (EC.7)

where A follows Eq. (EC.8) in which W (·) is the Lambert W function:

A=W

(
C(ψ)

R0

e1−α0ν

)
. (EC.8)

1 In the proof of Corollary 1, we use the notation C(ψ) instead of C to explicitly show the dependency of C on ψ to
facilitates our proof for the sensitivity of λ∗ on ψ.
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Sensitivity to ν. For this, we prove that dλ∗/dν < 0.

dλ∗

dν
=

1

ν2

(
A− ν dA

dν
− 1

)
(EC.9)

For ease of exposition, we set y= (C(ψ)/R0)e
1−α0ν . Therefore, we write A=W (y). Using the chain

rule, we have:

dA

dν
=
dW (y)

dy
× dy

dν
.

From the properties of the Lambert W function, we have (Weisstein 2002):

dW (y)

dy
=

W (y)

y (1 +W (y))
,

and we get:

dA

dν
=−α0

W (y)

1 +W (y)
.

By plugging the above expression in Eq. (EC.9) and the fact that 1/ν2 > 0, to prove dλ∗/dν < 0,

we need to show that:

W (y) + να0

W (y)

1 +W (y)
− 1< 0. (EC.10)

Denoting the left-hand side of the above equality by B, at ν = 0,

B =−1 +W (
C(ψ)e

R0

), (EC.11)

which is negative when C(ψ) < R0. It can also be shown that B is decreasing in ν and it

approaches −1 as ν goes to infinity. This proves that B < 0, and therefore, λ∗ is decreasing in ν.

Sensitivity to ψ. For this, we prove that dλ∗/dψ < 0, or equivalently, dA/dψ > 0. For ease of

exposition, we again set y= (C(ψ)/R0)e
1−α0ν . Therefore, we write A=W (y). Using the chain rule,

we have:

dA

dψ
=
dW (y)

dy
× dy

dψ
.

Given that C(ψ) is increasing in ψ, it is clear that dy/dψ > 0, and therefore, it suffices to

show dW (y)/dy > 0 to complete the proof for dA/dψ > 0. From the properties of the Lambert W

function, we have (Weisstein 2002):

dW (y)

dy
=

W (y)

y (1 +W (y))
,

which is positive, given that y > 0. �
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Proof of Proposition 2. For the proof, we set βw = β′w. By subtracting λDs (based on Eqs. (1)

and (5)) from λIs (based on Eqs. (1) and (4)), we have:

λIs −λDs =
βw

n/τ −
(
θdλDs + θdλd

) − βw
n/τ − θ̄sλIs

= βw
n/τ − θ̄sλIs −n/τ +

(
θdλ

D
s + θdλd

)(
n/τ −

(
θdλDs + θdλd

)) (
n/τ − θ̄sλIs

)
= βww

I
sw

D
s

(
θdλ

D
s + θdλd− θ̄sλIs

)
, (from Eqs. (4) and (5)), (EC.12)

Since βww
I
sw

D > 0, we have from Eq. (EC.12) that λIs ≥ λDs ⇐⇒ θdλ
D
s + θdλd ≥ θ̄sλIs. We have

that θ̄s ≥ θ̄d. Therefore, λIs ≥ λDs also implies that θ̄sλ
I
s ≥ θ̄dλDs . Thus, for θdλ

D
s + θdλd ≥ θ̄sλIs to

hold, it is sufficient to have λd ≥ (θ̄s/θd)λ
I
s.

The condition λd ≥ (θ̄s/θd)λ
I
s simplifies to the conditions on pd and Rd that is given in the

proposition (i.e., pd < (α0− (θ̄s/θd)λ
I
s −β′wwd)/βp and Rd <R(θ̄sλ

I
s/θd)). �

Proof of Proposition 3. When there is no occupancy limitation, waiting times are negligi-

ble (i.e., w = 0), and the in-store shopping rates λIs = λDs = α. Further, when the delivery pre-

mium pd ∈ ((α0−α−β′wwd)/βp, (α0−α−β′wwd)/βp) and the minimum shopping amount Rd <

R(α), we have α< λd <α. In this range of delivery customers’ shopping rate, we have the following

when α> λ∗:

(R(λd)−C)λd ≥ (R(α)−C)α.

Thus, the retailer’s profit (R(α)−C)θ̄sα under the in-store mode is smaller than its profit (R(α)−

C)θ̄dα+ (R(λd)−C)θdλd under the delivery mode.

As the store occupancy limit n becomes smaller, in-store customers’ respective shopping

rates λIs and λDs under the in-store and delivery modes decrease (Lemma 2), increasing prof-

its (R(λIs) − C)θ̄sλ
I
s and (R(λDs ) − C)θ̄dλ

D
s from in-store customers; but, the profit from online

customers (R(λd) − C)θdλd remains unchanged (as it does not depend on the store occupancy

limit n). Thus, there may exist a finite value of store occupancy limit n at which the profit under the

in-store mode exceeds that under the delivery mode. For this to happen, we must have the largest

profit under in-store mode, i.e., (R(λ∗)−C)θ̄sλ
∗ (which is achieved at n = nI at which λIs = λ∗)

larger than (R(λDs )−C)θ̄dλ
D
s + (R(λd)−C)θdλd. In other words,

θ̄s ≥
(R(λDs )−C)λDs
(R(λ∗)−C)λ∗

θ̄d +
(R(λd)−C)λd
(R(λ∗)−C)λ∗

θd.

This condition is met if we have:

θ̄s ≥
(R(λDs )−C)λDs
(R(λ∗)−C)λ∗

θ̄d + θd.

Thus, of this condition is met, under sufficiently strict store occupancy limit, retailer earns lower

profit under delivery mode than under in-store mode. �
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Proof of Proposition 4. For the proof, we set βw = β′w. We prove that λIs > λCs ⇐⇒
n

τ
− n

τc
>

θcλ
C
s . By subtracting λCs from λIs, we have:

λIs −λCs =
βw

n/τc− θ̄cλCs
− βw
n/τ − θ̄sλIs

= βw
n/τ − θ̄sλIs −n/τc + θ̄cλ

C
s(

n/τc− θ̄cλCs
) (
n/τ − θ̄sλIs

)
= βww

I
sw

C
(
n/τ − θ̄sλIs −n/τc + θ̄cλ

C
s

)
, (from Eqs. (4) and (6)) (EC.13)

Since βw, wI , and wCs are all positive, it follows from Eq. (EC.13) that λIs−λCs and
n

τ
− n

τc
−θcλCs

have the same sign; i.e.,

λIs >λ
C
s ⇐⇒

n

τ
− θ̄sλIs −

n

τc
+ θ̄cλ

C
s > 0 =⇒ n

τ
− n

τc
>
(
θ̄s− θ̄c

)
λCs . (EC.14)

�

Proof of Proposition 5. We first prove the proposition for the comparison between the in-store

and curbside pickup modes, and then we prove the proposition for the comparison between the

delivery and curbside pickup modes.

In-store vs. curbside pickup. The expressions for the expected profits are as follow:

ΠI =
(
R(λIs)−C

)
θ̄sλ

I
s

ΠC =
(
R(λCs )−C

)
θ̄cλ

C
s + (R(λc) + pc)θcλc− (1−x)gµc,

Taking the difference between the two results in:

ΠC −ΠI =
(
R(λCs )−C

)
θ̄cλ

C
s + (R(λc) + pc)θcλc− (1−x)gµc−

(
R(λIs)−C

)
θ̄sλ

I
s.

We substitute the term (R(λIs)−C) θ̄sλ
I
s in the above expression with (R(λIs)−C)λIs, and after

rearranging the terms derive the following inequality (since θ̄s < 1):

ΠC −ΠI >
[(
R(λCs )−C

)
λCs −

(
R(λIs)−C

)
λIs
]

+ θc
[
(R(λc) + pc)λc−

(
R(λCs )−C

)
λCs
]
− (1−x)gµc.

The retailer can set the curbside premium pc and the minimum required shopping amount Rc

such that the resulting shopping rate λc satisfies (R(λc) + pc)λc ≥R(λCs )λCs (in the worst case, this

can be achieved by setting pc or Rc such that λc = arg max{R(λ)λ}). This results in:

ΠC −ΠI >
[(
R(λCs )−C

)
λCs −

(
R(λIs)−C

)
λIs
]

+Cθcλ
C
s − (1−x)gµc. (EC.15)

The profit function (R(λ)− C)λ is unimodal (Lemma 1). Therefore, when λIs 6= λ∗, there are

two λ values for which λ= Π−1(λIs) (one of these λ values is λIs and the other one is either greater

or smaller than λIs depending on whether λIs <λ
∗ or λIs >λ

∗, respectively).2 Let λl and λu denote

the smaller and greater values of λ for which λ = Π−1(λIs). As long as λCs ∈ [λl, λu], we have

that [(R(λCs )−C)λCs − (R(λIs)−C)λIs]≥ 0. Under this condition, we have ΠC ≥ΠI if Cθcλ
C
s − (1−

x)gµc ≥ 0, which results in C ≥ ((1−x)gµc)/(λ
C
s θc), or equivalently, ψ≥C−1((1−x)gµc/(λ

C
s θc)).

2 When λI
s = λ∗, the only λ that satisfies λ= Π−1(λI

s) is λI
s. The following discussion applies to this case as well.



ec8

Delivery vs. curbside pickup. We consider the comparison between the delivery and curbside

pickup modes for θd = θc = θ. The expressions for the expected profits are as follow:

ΠD = (R(λDs )−C)θ̄λDs + (γR(λd)−C)θλd

ΠC =
(
R(λCs )−C

)
θ̄λCs + (R(λc) + pc)θλc− (1−x)gµc,

Taking the difference between the two results in:

ΠC −ΠD =
[
(R(λCs )−C)λCs − (R(λDs )−C)λDs

]
θ̄+ [(R(λc) + pc)λc− (γR(λd)−C)λd]θ− (1−x)gµc.

The retailer can set the curbside premium pc and the minimum required shopping amount Rc

such that the resulting shopping rate λc satisfies (R(λc) + pc)λc ≥ γR(λd)λd. This results in:

ΠC −ΠD ≥
[
(R(λCs )−C)λCs − (R(λDs )−C)λDs

]
θ̄+Cθλd− (1−x)gµc.

The profit function (R(λ)− C)λ is unimodal (Lemma 1). Therefore, when λDs 6= λ∗, there are

two λ values for which λ = Π−1(λDs ) (one of these λ values is λDs and the other one is either

greater or smaller than λDs depending on whether λDs <λ
∗ or λDs >λ

∗, respectively).3 Let λ′l and λ′u

denote the smaller and greater values of λ for which λ= Π−1(λDs ). As long as λCs ∈ [λ′l, λ
′
u], we have

that [(R(λCs )−C)λCs − (R(λDs )−C)λIs]≥ 0. Under this condition, we have ΠC ≥ΠD if Cθλd− (1−

x)gµc ≥ 0, which results in C ≥ ((1−x)gµc)/(λdθ), or equivalently, ψ≥C−1((1−x)gµc/(λdθ)). �

EC.3 Parameter Values Used in the Numerical Work

Across all plots, we use α0 = 2, αmin = 1, η = 1, R0 = 10, νR = 1, τ = 10, βw = 1, h= 0.1, C(ψ) =

0.1×ψ and θs = 0. For the delivery mode we use β
′
w = 0.1×βw, βp = 1, pd = 0.5, Rd = 10, θd = 0.2,

and γ = 0.95. For the curbside pickup mode, we use wc = 1, pc = 0.25, Rc = 10, g = 1, f(x) =

(1 +x2)τ with x= 0.5 and θc = 0.2.

• Fig. 1: ψ is varied between 0 and 5, and n is varied between 0 and 50.

• Fig. 2: Across all plots, ψ is varied between 0 and 5, and n is varied between 0 and 50.

Additionally: In Fig. 2a, θd takes values 0.1, 0.2, and 0.3. In Fig. 2b, Rd is varied to achieve λd =

0.6×α0, λd = 0.7×α0, and λd = 0.8×α0. In Fig. 2c, θs takes values 0, 0.05, and 0.1. In Fig. 2d, τd

(average shopping time by delivery customers) takes values 1.00× τ , 0.85× τ , and 0.7× τ , and

a M/M/1 model with two customer classes is used for carrying out calculations.

• Fig. 3: Across all plots ψ is varied between 0 and 5, and n is varied between 0 and 50.

Additionally: In Fig. 3a, θc takes values 0.1, 0.2, and 0.3. In Fig. 3b, Rc is varied to achieve

λc = 0.6×α0, λc = 0.7×α0, and λc = 0.8×α0. In Fig. 3c, we change the formula f(x) = (1 +x2)τ ,

to allow τc = 1.25× τ , τc = 1.50× τ , and τc = 1.75× τ . In Fig. 3d, θs takes values 0, 0.05, and 0.1.

3 When λD
s = λ∗, the only λ that satisfies λ= Π−1(λD

s ) is λD
s . The following discussion applies to this case as well.
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• Fig. 4: Across all plots ψ is varied between 0 and 5, and n is varied between 0 and 50.

Additionally: In Fig. 4a, θ
′
d = θ

′
c = 0.1. In Fig. 4b, three different values of θ

′
c and θ

′
d are chosen,

keeping their sum θ
′
c + θ

′
d = 0.2. In Fig. 4c, θ

′
d = θ

′
c = 0.05, θ

′
d = θ

′
c = 0.1, and θ

′
d = θ

′
c = 0.15.

• Fig. 5: τ is replaced with T (λs) = τ0 + κ× eν′(α0−λs), and three different combinations of κ

and τ0 values are chosen.

EC.4 Combined Mode (Adding Both Online Delivery and Curbside Pickup)

In this section, we consider a model in which the retailer employs both delivery and curbside pickup

services. We continue considering that the delivery service is offered in partnership with a third-

party delivery firm, whereas the curbside pickup service is offered using the retailer’s resources.

Let θ′d and θ′c denote the fractions of delivery and curbside pickup customers under the combined

model; then 1− θ′d− θ′c represents the fraction of in-store customers.

Using the structure for the shopping rates under the delivery mode and the curbside pickup

mode, we can express the shopping frequency of delivery and curbside pickup customers under the

combined mode as follows:

λd = min
{

(α0−βppd−β′wwd)
+
,R−1(Rd)

}
,

λc = min
{

(α0−h−βppc−β′wwc)
+
,R−1(Rc)

}
.

As the main models, the equilibrium shopping rate for in-store customers is determined by the

following two equations where ws is the store waiting time experience by in-store customers when

the store occupancy limit is n:

λs = (α−βwws)+ ,

ws =
1

n/τc− ((1− θd− θc)λs + θdλd)
.

We can express the profit function under the combined mode as follows, where µc = λc + 1/wc

is the required capacity for the curbside pickup service to achieve the service waiting time of wc

and x is the portion of that capacity met using the current resources:

ΠCD =(1− θd− θc)
(
R(λDs )−C(ψ)

)
λDs + θd (γR(λd)−C(ψ))λd

+ θc (R(λc) + pc)λc− (1−x)gµc.

EC.5 Inclusion of Inventory Related Costs to the Model

This section briefly discusses how the inclusion of inventory-related costs may affect our results. As

noted in §4 (the discussion accompanying Lemma 1), our results rely on the function λ (R(λ)−C)

being unimodal in shopping frequency λ (in this section, we refer to this function as profit rate

function). In what follows, we illustrate that in most reasonable circumstances, including inventory
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(a) Linear Inventory Cost
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(b) Concave Inventory Cost
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(c) Convex Inventory Cost

Figure EC.1 Gross profit function with the inclusion of inventory cost.

costs (i.e., the costs associated with carrying inventory and placing orders) does not change the

unimodal nature of the profit rate function. Define inventory cost function Inv(r) as the average

inventory costs per unit time incurred in supporting the sales per unit time that leads to gross

profit r per unit time. Then the inclusion of inventory cost changes the gross profit function as

follows:

π
′
(λ) = λ (R(λ)−C)− Inv(λR(λ)).

It is reasonable to assume that the retailer’s rate of earning gross profit, namely λR(λ), is linear

in the sales volume, and since inventory cost increases with sales, it follows that Inv(r) is an

increasing function of r. There can be three possible cases for the shape of this function:

• First, inventory cost could be linear in r. This would be the case when the retailer cannot

re-optimize its inventory policies to changes in product volumes, resulting in linearly increasing

inventory costs. Given the temporary nature of the pandemic, this is a likely scenario. In this

case, there is a linear shift in the function λ(R(λ) − C), which preserves the unimodal nature

of the function and the overall qualitative nature of our results. We depict this in Fig. EC.1(a),

where Inv(r) = 0.25× r (other parameter values and functional forms are the same as described

in §EC.3).

• The second possibility is that Inv(r) is concave in r. In other words, the inventory cost

is proportionally smaller at larger volumes, i.e., the retailer can exploit economies of scale in

inventory costs by re-optimizing its inventory decisions. In this case, since the inventory cost

increases by a small amount compared to λR(λ), the inventory cost adjusted profit rate function

remains unimodal. We depict this in Fig. EC.1(b), where Inv(r) = 0.25×
√
r.4

4 This is similar to the classic economic order quantity (i.e., EOQ) formulation, in which the optimal inventory cost
is proportional to the square root of flow rate.
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• Finally, the third possibility is that Inv(r) is convex in r. This corresponds to situations in

which the retailer struggles to keep up with the demand and must incur higher inventory costs

to ensure sufficient supply (for example, the retailer resorts to more expensive freight/supplier for

delivering products). Even in these cases, as long as the magnitude of inventory cost is relatively

small, we expect the unimodal nature of function π
′
(r) is preserved, as shown in Fig. EC.1(c),

where Inv(r) = 0.1× r1.5. However, it is indeed possible that the magnitude of cost is not small,

and the resulting profit rate function is no longer unimodal. In such cases, the retailer’s shopping

mode decision must account for the implication of the bulk-shopping behavior on inventory costs.
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